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Direct numerical simulation of turbulent homogeneous shear flow is performed in 
order to clarify compressibility effects on the turbulence growth in the flow. The two 
Mach numbers relevant to homogeneous shear flow are the turbulent Mach number Mt 
and the gradient Mach number Mg.  Two series of simulations are performed where the 
initial values of M g  and Mt are increased separately. The growth rate of turbulent 
kinetic energy is observed to decrease in both series of simulations. This ‘stabilizing’ 
effect of compressibility on the turbulent energy growth rate is observed to be 
substantially larger in the DNS series where the initial value of Mg is changed. A 
systematic comparison of the different DNS cases shows that the compressibility effect 
of reduced turbulent energy growth rate is primarily due to the reduced level of 
turbulence production and not due to explicit dilatational effects. The reduced 
turbulence production is not a mean density effect since the mean density remains 
constant in compressible homogeneous shear flow. The stabilizing effect of com- 
pressibility on the turbulence growth is observed to increase with the gradient Mach 
number Mg in the homogeneous shear flow DNS. Estimates of MB for the mixing layer 
and the boundary layer are obtained. These estimates show that the parameter Mg 
becomes much larger in the high-speed mixing layer relative to the high-speed 
boundary layer even though the mean flow Mach numbers are the same in the two 
flows. Therefore, the inhibition of turbulent energy production and consequent 
‘stabilizing’ effect of compressibility on the turbulence (over and above that due to any 
mean density variation) is expected to be larger in the mixing layer relative to the 
boundary layer, in agreement with experimental observations. 

1. Introduction 
The inhibited growth of the shear layer thickness and the turbulent stresses in the 

high-speed mixing layer is a well-known phenomenon (Bradshaw 1977; Kline, 
Cantwell & Lilley 1982; Papamoschou & Roshko 1988). For example, the thickness of 
a plane mixing layer at convective Mach number M, = 1.5 grows at a rate which is only 
a third of the nominal incompressible value. However, the reasons for the strong 
‘stabilizing’ effect of compressibility in the turbulent mixing layer remain unclear. One 
explanation (Sandham & Reynolds 1991 ; Morris, Giridharan & Lilley 1990) draws an 
analogy with the result of linear analysis that the growth rate of small disturbances 
decreases when the convective Mach number M ,  increases. Here, the convective Mach 
number M, is the ratio of the mean velocity difference (U,  - U,) across the mixing layer 
to the sum (c ,  + c,) of the sound speeds in the two streams. Linear stability analyses 
(Ragab & Wu 1989; Jackson & Grosch 1990; Sandham & Reynolds 1991) show that 
the growth rate of the most amplified disturbance decreases as a function of M,. 
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Jackson & Grosch (1990) have shown that the linear analysis results for the maximal 
growth rate for a wide range of values for the free-stream temperature and density fall 
on essentially a single curve which is a function of M,. The similarity between the 
variation of disturbance growth rate as a function of M, and the variation of the 
experimentally observed growth rate of shear layer thickness as a function of M ,  has 
prompted the argument that linear stability analysis explains the compressibility effect 
of reduced mixing. However, it is unclear how and why simple linear theory applies to 
the fully turbulent mixing layer. 

Another explanation of the reduced mixing of the high-speed mixing layer has been 
advanced by Zeman (1990) and Sarkar et al. (1991 b), who suggest that the dissipative 
effect of dilatational velocity fluctuations (such fluctuations have V . u =j= 0) becomes 
progressively more important when the turbulent Mach number Mt increases, reduces 
the turbulent energy, and thereby decreases turbulent mixing. The turbulent Mach 
number Mt is the ratio of the r.m.s. (root mean square) velocity fluctuation u to the 
speed of sound c. Turbulence models developed by Zeman (1990) and Sarkar et al. 
(1991 b) which parametrize the dilatational correlations as functions of Mt have been 
able to capture the decreased growth rate of the high-speed mixing layer. However, the 
hypothesis that dilatational effects lead to the stabilizing effect of compressibility needs 
direct validation. 

Compressibility effects in the high-speed boundary layer are different from those in 
the high-speed mixing layer. When the free-stream Mach number M ,  of the boundary 
layer increases, there is a moderate decrease in skin friction and thickness growth rate 
which is directly due to the reduction of density from its free-stream value and the 
consequent reduction in momentum transport by the Reynolds shear stress. In the case 
of the compressible mixing layer, an increase in the convective Mach number M ,  leads 
to a dramatic reduction in the growth rate of the shear layer thickness, a reduction 
which is far larger than can be explained by the density variation. The discrepancy 
between compressibility effects in free shear layers and wall boundary layers is not 
understood. A theoretical explanation for the reduced growth rate of the high-speed 
mixing layer should account for this crucial difference between turbulent free shear 
flows and wall-bounded flows in the high-speed regime. 

Owing to the limitations of current computer hardware, three-dimensional direct 
numerical simulations (DNS) of the compressible mixing layer or the compressible 
boundary layer have not been performed at Reynolds number sufficiently high for the 
turbulence to be fully developed. It is relatively easier to simulate homogeneous 
turbulent flows at realistic turbulence Reynolds numbers, and then perform a 
parametric DNS study that compares results from a few different cases. In the present 
paper, simulations of homogeneous shear flow, a flow with constant mean shear rate, 
are described. Homogeneous shear flow retains the feature of sustenance of turbulent 
kinetic energy by mean shear common to a variety of turbulent shear flows. 
Compressible homogeneous shear flow has been studied previously with DNS by 
Feiereisen et al. (1982), and more recently by Sarkar, Erlebacher & Hussaini (1991 a), 
and Blaisdell, Mansour & Reynolds (1993). Although the two later DNS investigations 
did find that increased levels of compressibility lead to decreased levels of turbulence 
just as observed in experiments on the high-speed mixing layer, a systematic 
comparison of different cases to identify possible causes for this ‘stabilizing’ effect of 
compressibility was not performed. Furthermore, the studies neglected to discriminate 
between the gradient Mach number Mg and the turbulent Mach number Mt. The 
gradient Mach number is Mg = Sl/c, where S = dO/dy is the mean shear rate, 1 a 
representative integral lengthscale of the turbulence in the direction of shear, and c the 
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speed of sound. The parameter Mg can be viewed as the ratio of an acoustic time l / c  
for a large eddy to the mean flow timescale l/S. Durbin & Zeman (1992), in their RDT 
(rapid distortion theory) analysis of homogeneous compressed turbulence, recognized 
that a parameter similar to the gradient Mach number that is defined by Am = Dl/c 
with D = (V. U‘/ is one of the relevant parameters; however, these authors considered 
only the limit Am 4 1. Later, Jacquin, Cambon & Blin (1993), and Cambon, Coleman 
& Mansour (1 993), showed, again for homogeneous compressed turbulence with large 
mean compression rate, that compressible RDT results are sensitive to Am. It should 
be noted that the RDT restriction of high mean distortion rate relative to the large- 
scale turbulence distortion rate does not apply to the present simulations. 

Since the gradient Mach number M g  introduced in the present work is based on the 
mean velocity field, like the convective Mach number M,, it is important to compare 
and contrast these two Mach numbers. There is of course a similarity, because 
M, = Sl/c can be viewed as a ratio of the mean velocity difference Sl across a ‘large- 
scale eddy’ to the speed of sound, just as M, is related to the ratio of the mean velocity 
difference across the two streams in a mixing layer to the speed of sound. However, 
there are essential differences. The parameter Mg is a field quantity which varies across 
an inhomogeneous shear layer, unlike M,. Moreover, M, differs among shear flows 
such as the mixing layer, boundary layer and the wall jet since the variation of mean 
velocity field and turbulence lengthscale is different in these flows even if the overall 
velocity difference across the flows is the same. In fact, we will show later in this paper 
that the value of M g  is much larger for the supersonic mixing layer than the supersonic 
boundary layer even if the mean flow Mach number has the same value in the two 
flows. 

In our earlier DNS studies (Sarkar et al. 1991 a) of compressible homogeneous shear 
flow, the speed of sound was varied keeping all other parameters fixed which led to the 
simultaneous change of initial gradient Mach number M,, and initial turbulent Mach 
number M,,. Similarly, M,, and M,, were simultaneously increased (or decreased) in 
the independent DNS investigation of Blaisdell et al. (1993). The present study 
performs two series of new simulations that comprise six different cases to address the 
following questions: (i) How do the gradient Mach number and turbulent Mach 
number individually effect the flow evolution? and (ii) What are the probable reasons 
for any compressibility effects on the flow evolution due to the variation of these Mach 
numbers? In series A of the simulations, M,, is varied keeping M,, constant and vice 
versa in series B. It should be noted that Mg and M, are different parameters because 
their ratio M,/M, = Sl/u is not a constant, that is, Sl/u can depend on other factors 
such as the flow geometry, compressibility, wall effects and initial/boundary 
conditions. Thus, among incompressible flows, the log region in the boundary layer, 
equilibrium homogeneous shear flow, and the near-wall region in the boundary layer 
have progressively larger values of Sl/u and correspondingly different turbulence 
structure and growth rates. For example, Lee, Kim & Moin (1990) have shown that 
incompressible homogeneous shear flow with initial Sl/u that is sufficiently larger than 
the equilibrium value exhibits low- and high-speed streaks just as in near-wall 
turbulence. 

2. Preliminary analysis 
The compressible Navier-Stokes equations provide the mathematical model for the 

problem. After performing the Reynolds decomposition into mean and fluctuating 
parts of the velocity, a system of equations can be obtained for the evolution of the 
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instantaneous density p*, velocity fluctuation u:‘, and the instantaneous pressure p*. 
The superscript * is used to denote a dimensional variable, the overbar is used to 
denote an averaged variable, and the prime is used to denote fluctuations in a variable 
with respect to its average. A tilde will be used later for denoting mass-weighted or 
Favre average. The following equations are a specialization of the general equations to 
the homogeneous shear flow problem where the mean velocity is 0; = Sxt, and S is 
a constant: 

(1) 

(2) 
atp*+ oj*p:.+(Uj*’p*),j = - (y-  l)p*U;i.+(y- I)@*, (3) 

p* = p*RT*, (4)  

a, p* + U :  p:i + c.*tq), = 0, 
a,@*u:‘) + U,*C.*.:’),~ + @*uj*’u:’) , 3  . = -p*i - sp*qsil +7;.:j, 

where @* = 7;; uz>+pS2 is the dissipation function, p the molecular viscosity, R the 
gas constant, y the ratio of specific heats, and K the thermal conductivity. The fluid 
properties p, R and K are taken to be constant to simplify the problem. The fluctuating 
viscous stress is 

7;; = I.(.;; + 24;;) -$pal& sij. ( 5 )  

We wish to determine the variables that parametrize compressibility effects on the 
turbulence evolution. One method is to determine the conditions under which the 
acoustic timescale lo/co becomes important for the behaviour of a given turbulence 
velocity fluctuation u, with lengthscale 1,. For this purpose, we non-dimensionalize 
(1)-(4) with Zo/co as the timescale, the initial mean density po as the density scale, the 
initial mean temperature T,, as the temperature scale, u, the fluctuating velocity scale, 
U, the mean velocity scale, and I, the lengthscale. The instantaneous pressure is non- 
dimensionalized by pqu:. The exception is the first term on the right-hand side of (3) 
which is explicitly split into a mean pressure and fluctuating pressure, and the mean 
pressure is non-dimensionalized by the initial mean pressure Po so that 
p = p*/Po = O(1). The non-dimensionalization adopted here uses a hybrid scaling 
because incompressible scaling po ut is used for pressure variation while acoustic scaling 
l /co is used for the time variation. 

The non-dimensional equations become 

a, P + Mo ui p, i + Mt,@u;), i = 0, (6) 

(7) a,c.u;)+M, oj(pu;),j+Mt,@u; u;),j = -Mt,p:,-MM,,pu;si, +-7ij , j ,  Mto I 

Re0 

T=-. Y%oP 
P 

(9) 

The non-dimensional parameters unrelated to the speed of sound that appears in 
(6)-(9) are the Reynolds numbers Reo = u, Zo/vo and the Prandtl number Pro = ~ U C J K .  
Since the mean convection term that contains Vi can be removed in the special case of 
homogeneous turbulence by transforming the equations to a frame moving with the 
mean velocity, the mean Mach number M, does not affect the evolution of the flow 
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variables in that moving reference frame. Thus, the only two ‘compressibility’ 
parameters in the equations for homogeneous shear flow are the turbulent Mach 
number M,, = u,/c, and the gradient Mach number MBo = Sl,/c,. For a general flow, 
the gradient Mach number can be defined by M,, = Sl,/c, where S = UiJ1I2 and 
I ,  an appropriate integral lengthscale. In the case of shear flow, I ,  is chosen to be the 
integral lengthscale of the streamwise fluctuating velocity in the shearing direction x2. 

Equation (7) suggests that the fluid momentum may change significantly on the 
acoustic timescale if M,, = O(1) or M,, = O(1). Similarly, (6) and (8) show that if 
M,, = O( 1) the variation of fluid density and pressure on the acoustic timescale can be 
significant. Thus, it is clear that compressibility effects on the flow evolution increase 
when either M,, or M,, increases. In the present DNS study, the quantities M,, and 
M,, are considered to be the compressibility parameters and varied among different 
cases. 

We note that the above discussion of compressibility effects on the flow evolution is 
relevant only after any initial transients in the flow have subsided. The role of initial 
conditions in the evolution of compressible isotropic turbulence has been previously 
investigated by Erlebacher et al. (1990) with a DNS of the full system and with a low- 
M,, asymptotic analysis where the nonlinear and viscous terms were dropped. The 
reduced equations in the analysis constitute a hyperbolic system whose eigenvalues 
show strong asymmetry essentially due to the l/M,, scaling of the right-hand side of 
(8) versus the M,, scaling of the right-hand side of (7). We found that, owing to the 
asymmetry in the eigenvalues, dilatational velocity fluctuations or pressure fluctuations 
can grow rapidly on the acoustic timescale from their respective initial values under 
some circumstances, and furthermore classified the conditions which lead to the initial 
transients. The initial conditions in this study have been chosen so as to remove the 
influence of such initial transients. 

The turbulent kinetic energy K = iu; u;, where the Favre average u; u; = pu; u;/p, is 
an estimate of the energy associated with the velocity fluctuations. For the 
homogeneous turbulence considered here, K is computed as a volume average over the 
computational domain. The turbulent kinetic energy is a function of time and the non- 
dimensional parameter A(t) = (l/SK) (dK/dt) describes the instantaneous value of its 
temporal growth rate. It may be expected that physical effects that decrease A in 
homogeneous shear flow will inhibit turbulent energy levels and thereby inhibit shear 
layer growth in inhomogeneous turbulent shear flows as well. In fact, it is shown below 
through an analogy that the coefficient C, in the following commonly accepted 
expression for the streamwise growth rate of a mixing layer between two streams with 
uniform speeds U, and U,, 

- -  __ 

is proportional to A .  

U,. The kinetic energy K in such a mixing layer is given by 
Consider a self-similar, plane mixing layer between two streams of velocity U, and 

K = Co(U1- U2>“7), (1 1) 

where C, is a constant, the similarity variable y = y/6(x), and 6(x) is the shear layer 
thickness. Let K* be the kinetic energy integrated across the transverse direction, that 
is 

K* = l+ Kdy = C,( U ,  - U 2 ) 2 6 r m f l ~ )  dy. (12) 
-m 
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From (12), it can be shown that 

1 dK* 1d6 
K* dx 6dx‘ 

- - -- -- 

We now consider homogeneous shear flow, U ( y )  = Sy with S a constant. The 
temporal growth rate of the turbulent kinetic energy K(t) is described by the non- 
dimensional variable A defined by 

1 dK A = - -  
SK dt ’ 

where S is the constant shear rate. Physical experiments (Tavoularis & Karnik 1989) 
and DNS (Rogers, Moin & Reynolds 1987) support the notion that in the case of 
incompressible homogeneous shear flow, the turbulence eventually grows expo- 
nentially, that is A(t) + A ,  (a constant) for large t. Although this picture of turbulence 
is consistent with available data, there is no rigorous proof that the turbulence grows 
exponentially for all time. In any case, A is a useful non-dimensional estimate of the 
instantaneous growth rate of K. Assume that the temporal evolution of the turbulent 
kinetic energy can be transformed into a spatial evolution of K* by the transformation 
x = U, t ,  where U, is a characteristic convection velocity given by 

where C, is a constant, and Ul and U, are the velocities at the top and bottom of the 
shear layer, respectively. Then (14) can be transformed into a relation for the 
equivalent spatial growth rate 

1 dK* - A , S -  A,(U,-U,) 
K* dx U, 6C,(Ul+U,)’ 

where A ,  is the constant, large-time value of the kinetic energy growth rate. 

layer, and equate the right-hand side of (13) and (16) to obtain 
Now we draw an analogy between the homogeneous shear layer and the mixing 

d6 - A ,  Ul - U, 
- - -~ 
dx C, U,+ U,’ 

According to the analogy, the growth rate of the mixing layer thickness is proportional 
to the asymptotic growth rate of turbulent kinetic energy in the corresponding 
homogeneous shear flow. Furthermore, (17) implies that a constant value of A ,  in the 
homogeneous shear flow problem is consistent with the linear growth rate, 
d6/dx K (U, - U J / (  U,  + U,) (Schlichting 1979), seen in fully developed constant- 
density mixing layers if the coefficient C, in (15) for the convection velocity U, is a 
constant independent of the free-stream velocities. 

In summary, this section establishes that the gradient Mach number and the 
turbulent Mach number should be considered as important compressibility parameters 
in homogeneous shear flow. Furthermore, it is shown that the behaviour of the 
normalized temporal growth rate of the turbulent kinetic energy, A = (l/SK) (dK/dt), 
as a function of the gradient and turbulent Mach numbers is important because of its 
connection to shear layer growth in more general turbulent shear flows. 
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3. DNS method 
The algorithm for the DNS of compressible homogeneous shear flow is essentially 

identical to the spectral collocation, third-order Runge-Kutta algorithm which was 
used in our previous simulations. Details can be found in Sarkar et al. (1991 a). All the 
simulations were performed on a 12tI3 spatial grid in a cube of side 2n. Each simulation 
had the same initial data which corresponded to uniform density p = 1, solenoidal 
velocity fluctuations, pressure fluctuations calculated from the usual incompressible 
Poisson equation, and temperature obtained from the equation of state of an ideal gas. 
Such a choice minimizes the buildup of compressibility effects due to initial transients 
from incompatible initial conditions. The initial velocity is a Gaussian random field 
whose energy spectrum E(k) cc k4 exp (- 2k2/k3  with k, = 18. The flow evolution is 
governed by the following parameters which need to be prescribed: the shear rate S,  
the viscosity v, the thermal diffusivity KIP, C,, the initial mean speed of sound c,, the 
initial r.m.s. (root mean square) velocity u,, and the initial turbulence lengthscale I,. 
The corresponding non-dimensional parameters are M,,, M,,, Re,,, and Pro which are 
computed as follows: M,, = Sl,/c,, where S is the constant mean shear rate, I ,  the 
initial integral lengthscale of u in the transverse shearing direction and C, the initial 
mean speed of sound; M,, = u,/c,, where u, = (2K0)'/2 and KO is the initial turbulent 
kinetic energy; Re,, = uoA,/v, where the Taylor microscale is A, = uo/wo, and 
w, = (wiwi)'/' is the r.m.s. vorticity; and Pro = ,uC~/K.  

Two series of simulations labelled A and B, respectively, were performed. In series 
A, the gradient Mach number M,, is progressively increased in cases Al-A4 by 
changing the shear rate S, all other non-dimensional parameters remaining the same. 
In series B, the turbulent Mach number M,? is progressively increased in B1 to B3, all 
other non-dimensional parameters remaining the same. Both S and c were 
appropriately changed in series B so as to vary M,, while Mgs simultaneously remains 
constant. Table 1 gives the non-dimensional parameters applicable to the simulations 
performed here. Note that Case A1 is the same case as Case B3 so that there are a total 
of six different simulations. 

The range of variation of M,, and M,, is chosen to cover a reasonable portion of 
parameter space with case Bl as an example with low gradient and turbulent Mach 
numbers, and case A4 as an example with high gradient and turbulent Mach numbers. 
The constant value M,, = 0.4 in series A is chosen to be somewhat high so that 
(Sllu), = M,,/M,, does not become so large as to cause the turbulence evolution to be 
dominated by linear effects (rapid distortion theory). The initial value (Sllu), varies 
between 0.55 and 3.3 in series A. The Prandtl number is chosen to be Pro = 0.7 since 
the flow of air is considered here. The large scales of turbulence acquire energy due to 
the mean shear while the energy of the small scales grows due to the increase in 
turbulence Reynolds number and consequent increase in nonlinear energy transfer. 
Thus, the integral lengthscale I increases and the Kolmogorov lengthscale 11 decreases 
with time. The simulations were terminated when either 1;1 became small enough to 
cause insufficient resolution of the small scales by the grid, or when I became large 
enough for the periodic boundary conditions to affect the growth of the large scale. The 
termination time of the simulations varied between St = 15 and 20. The turbulent 
Reynolds number increases with time and its value at the end of the simulations varied 
between Re, = 35 and 42 which indicates that the velocity field becomes turbulent, 
albeit with moderate Reynolds number. Since the turbulence is spatially homogeneous, 
turbulence statistics and correlations at a given time are obtained by averaging over the 
1283 points in the computational domain. 
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Case M,, M,, Re,, pro (SKI40 
(4 A1 0.22 0.40 14 0.7 1.8 

A2 0.44 0.40 14 0.7 3.6 
A3 0.66 0.40 14 0.7 5.4 
A4 1.32 0.40 14 0.7 10.8 

0.22 0.13 14 0.7 5.4 
0.22 0.20 14 0.7 3.6 B2 

B3 0.22 0.40 14 0.7 1.8 

(b) B1 

TABLE 1. Parameters for the DNS : (a) series A, (b) series B. 

- 4. DNS results on the growth of turbulent energy 
The compressibility effect on the evolution of turbulent kinetic energy K = $u; u; is 

discussed here. The non-dimensional parameter A = (1 / S K )  (dK/dt) describes the 
temporal growth rate of the turbulent kinetic energy. It was shown in 92 that the 
behaviour of A is of fundamental interest. 

The equation for turbulent kinetic energy K is now considered to identify the factors 
that could influence the growth rate. The equation for the evolution of K in 
homogeneous shear flow is 

dK/dt = 9 - E ,  - 6, +p'd'/ji, (18) 
where 9 = - Sui u; is the production, es = VO; o s h e  solenoidal dissipation rate, 
e, = gvd'2 the compressible dissipation rate, and p'd' the pressure4ilatation. Here 
w; is the fluctuating vorticity, and d' is the fluctuation in dilatation ( V - u ) .  It is useful to 
work with an evolution equation for the growth rate A = (l/SK)(dK/dt), an 
equation which is obtained from (18) to be 

_1 ~ 

- 
where b,, = ui u72K is the Reynolds shear stress anisotropy. The last term in (19) 
represents the explicit influence of compressibility through dilatational effects. In the 
incompressible case (Speziale 199 l), it is generally accepted that homogeneous shear 
flow turbulence evolves to a state with constant values of b,, and e s / 9 ,  and therefore, 
from (19), A also approaches a constant equilibrium value Am. It is clear from (19) that 
a change in the equilibrium value A ,  in homogeneous shear flow with increasing 
compressibility can be due to any of the following: (i) a change in the magnitude of b,, 
which implies a more (or less) 'efficient' production mechanism, (ii) ~- a change in e s / P ,  
the relative dissipation of the turbulence, and (iii) a change in (e, -p'd'/p)/SK, which 
represents dilatational effects. 

4.1. Results from series A 
Figure 1 shows the values of A at integral values of St in the simulation. It is clear that 
there is a systematic decrease of the asymptotic (large St) value A ,  of the turbulence 
growth rate when M,, increases in cases Al-A4. For example, case A4 with M,, = 1.32 
has A ,  N 0.03, which is more than a factor of 3 smaller than the corresponding value 
of A ,  z 0.1 1 in case A1 with M,, = 0.22. 



----- Case A4 ------ Case A3 

-2b,, 0.: 

EJ ----- Case A4 

Case A2 
Case A1 

. . . . . .. . . . 

0 5 10 15 20 
St 

FIGURE 2. Evolution of the non-dimensional production Y/SK = -2b,, in series A of the 
homogeneous shear DNS. 

The terms on the right-hand side of (19) have been evaluated and compared in order 
to identify possible causes for the reduced growth rate of K. Figure 2 shows the 
evolution of the non-dimensional production ( B / S K  = -2b,,). By St = 20, the 
turbulence eventually evolves to approximately constant values of Reynolds shear 
stress anisotropy in each case. Furthermore, the long-time values of b,, show a 
systematic decrease with the corresponding value of Mg0. The magnitude of -2b,, in 
case A4 is smaller by a factor of 3 relative to that in case Al. Thus, the efficiency of 
turbulent production by the mean shear is strongly inhibited when the gradient Mach 
number increases. 

The evolution of c s / P  is shown in figure 3 (a). After an initial transient, there is only 
a slight difference between the different cases which is far too small to cause the large 
reduction in A .  For example, es/P at St = 20 varies between 0.5 and 0.6 for cases 
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FIGURE 3 (a-d). For caption see facing page. 
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Al-A4. The 20 % increase in the relative dissipation es/P in case A4 relative to case 
A1 is a small effect compared to the factor of 3 decrease in the non-dimensional 
turbulent production (-2b,,). Figure 3(b) shows the evolution of the normalized 
dissipation s , /SK.  The long-time values of e, /SK show a systematic decrease from case 
A1 to A4. Since EJSK = -2(es/P)b1,, such a decrease is consistent with com- 
pressibility decreasing the value of -bI2 (in figure 2) while having very little effect on 
e, /P (in figure 3a). 

Figure 3(c) shows the behaviour of the dilatational terms. Although small, the 
normalized dilatational term in figure 3(c) is not negligible; its value at the end of the 
simulation is in the range of 1&30 % of the growth rate A of the corresponding case. 
Owing to a similar observation in our earlier simulations (Sarkar et al. 1991a), we 
attributed significant importance to dilatational terms. However, the systematic 
comparison of the different DNS cases conducted in the present study shows that the 
dilatational terms do not lead to the compressibility effect of decreased growth rate of 
turbulent kinetic energy. This can be seen by comparing the different curves in figure 
3 (c). The difference in the normalized dilatational terms between the various cases is 
small and also of the wrong sign to explain the difference in thevalues of A ,  between 
these cases. For instance, the values for the dilatational term (6, -p’d‘/p)/SKare smaller 
for St > 15 in case A4 relative to case Al,  implying that dilatational effects would 
increase the growth rate in case A4 relative to case Al ,  contrary to the observed 
decrease in A .  

Equation (19) for A can be rewritten as 
A = - 2b,,( 1 - X,), (20) 

where the influence of all terms other than the production term is lumped into X, which 
is given by 

6, + 6, -p“/p 
P 

x, = 

Figure 3 (d) shows that, after the initial transient, X ,  becomes approximately constant 
and shows very little difference for St > 15 among the different cases. Thus, the large 
reduction in the value of A is almost wholly due to the large reduction in the magnitude 
of Reynolds shear stress anisotropy b12. 

For homogeneous flow, the Helmholtz decomposition gives a unique split of the 
velocity field into incompressible and compressible components, that is u = u’ + uc, 
where V. ur = 0 and V x uc = 0. The DNS data base is investigated to ascertain 
whether the dilatational component uc is explicitly responsible for the reduced 
production. The Helmholtz decomposition leads to the following expression for the 
Reynolds shear stress anisotropy : 

where xk = K C / K  is the %mpr@le fraction of turbulent kinetic energy, 
biz = ~ x / 2 K ’ ,  and b& = (u’,ui-u: ui)/2KC. It is found that the last term on the 
right-hand side of (22) is much smaller than the first term on the right-hand side 
primarily because xk < 10 Yn in all the simulations considered here. This implies that 
the reduced b,, of the solenoidal velocity component is responsible for the reduction in 
the overall value of b,, at high gradient Mach numbers. 

Thus, the DNS results of series A indicate that the large reduction of the turbulence 
growth rate that occurs when the gradient Mach number M,, increases is primarily due 

b,, = (1 - Xk) b:, + X k  b L  (22) 

FIGURE 3. Evolution of (a)  the relative dissipation cJP, (b) the normalized dissipation e,/SK, ( c )  the 
dilatational terms in the K-equation, and ( d )  A’,, the ratio of the sum of dissipation and dilatational 
terms to the production term in the K-equation for Series A of the homogeneous shear flow DNS. 
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FIGURE 4. Evolution of (a) the streamwise, (b )  the transverse Reynolds stress anisotropy, and 
( c )  the shear stress correlation coefficient, in series A of the homogeneous shear DNS. 

to the reduced Reynolds shear stress anisotropy of the solenoidal velocity component 
and not due to the explicit dilatational terms. 

The long-time values of the Reynolds shear stress anisotropy b,, exhibit a systematic 
decrease in magnitude from cases A1 to A4 as seen in figure 2. The effect of 
compressibility 7 on the other components of the Reynolds stress tensor 
b.. 87 = u:u!/2K-$Yij 8 ? is also of interest. Figures 4(a) and 4(b) show that there is a 
systematic increase in the magnitude of the streamwise and transverse anisotropies, 
respectively, from case A1 to case A4. From these results, it can be deduced that the 
pressure-strain correlation tensor in homogeneous shear flow is significantly changed 
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FIGURE 5. Evolution of the turbulent energy growth rate A from DNS of incompressible 
homogeneous shear flow. Cases AI1, AI2, A13 and A14 have the same initial data, shear rate S and 
viscosity v as cases Al ,  A2, A3 and A4, respectively. However, cases AII-A14 are simulations of the 
incompressible Navier-Stokes equations, while A 1-A4 consider the compressible counterpart. 

due to compressibility. Figure 4(c) shows the evolution of the correlation coefficient 
R(u,v) = ~ / ( u r m s v r m s ) .  The difference in R(u,u) among cases is not as dramatic as 
that in the Reynolds stress anisotropies. 

The gradient Mach number is changed in series A by changing the shear rate S.  A 
legitimate concern is that increasing S in the incompressible case may lead to decreased 
turbulence growth rates and the observed reduction of A in series A may not be a 
'compressibility effect' after all. In order to address this concern, four cases AI1, A12, 
A13 and A14 were performed where the incompressible Navier-Stokes equations were 
simulated. The initial data and parameters were identical for A11 and Al,  for A12 and 
A2, for A13 and A3, and for A14 and A4 except that the incompressible Navier-Stokes 
equations were numerically solved in cases AI1-A14 in contrast to the simulation of the 
compressible Navier-Stokes equations in cases Al-A4. Since the speed of sound 
c = co in the incompressible case, the gradient Mach number and turbulent Mach 
number are both zero in cases AI1-A14. The initial values of S K / E  in cases AI1, A12, 
A13 and A14 are 1.8, 3.6, 5.4, and 10.8 respectively. Figure 5 shows the evolution of 
turbulent energy growth rate A in the incompressible simulations. The simulations had 
to be terminated by St = 12 so as to preserve good resolution of the small scales. The 
difference between the long-time growth rates among cases A1 1-A13 is small and, 
furthermore, the higher shear case A13 seems to have a slightly larger value of A at the 
end of the simulation than the low shear case AIl, contrary to the dramatic reduction 
with increased shear observed in the compressible simulations. However, the highest 
shear case A14 has a slightly reduced growth rate, probably because the initial value 
of S K / s  = 10.8 is large enough to cause some rapid distortion effects in the turbulence 
evolution. Overall, it is clear that the reduced turbulence growth rate seen in series A 
of the simulations is indeed a compressibility effect. 

4.2. DNS results on the turbulence growth in series B 
The effect of increasing Mto, keeping M,, constant, on the turbulence growth rate is 
investigated in series B of the simulations. According to the DNS, A evolves to 
asymptotic values that show a systematic decrease with increasing Mto.  Figure 6 shows 
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FIGURE 6 .  Evolution of the turbulent energy growth rate A for series B of the 
homogeneous shear DNS. 
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FIGURE 7. Evolution of the non-dimensional production P / S K  = -2b,, in series B of the 
homogeneous shear DNS. 

that the high M,, case B3 has an asymptotic value A ,  % 0.1 1 which is smaller than the 
corresponding value A ,  1: 0.15 in the low M,, case Bl.  Although significant, the 
reduction is not as large as in series A where the high M,, case A4 has a growth rate 
A ,  = 0.03 which is only a third of that in case Al .  

Equation (19) is again used to distinguish between the contribution of production, 
dissipation and explicit dilatational terms to the observed 'compressibility effect' of 
reduced turbulence growth rate. Figures 7 and 8(a) show the evolution of normalized 
production - 2b,,, and the relative dissipation e J 9 ,  respectively. Comparison of cases 
B1 and B3 in figures 7 and 8(a) show that case B3 has a lower production level and 
higher dissipation level relative to case B1. This difference leads to the lower value of 
A for case B3 relative to case B1 in figure 6. Figure 8(b) shows the evolution of the 
pressuredilatation and compressible dissipation; the cases with higher M,, have larger 
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FIGURE 8. Evolution of (a) the relative dissipation cJ9' and (b) the dilatational terms in the 
K-equation for series B of the homogeneous shear flow DNS. 

dilatational contributions to the normalized growth rate. However, the difference in 
the dilatational terms among the various cases in figure 8(b) is small. 

Thus, the compressibility effect of decreased growth rate of turbulent kinetic energy 
in series B is due to both a reduced level of production and an increase in the relative 
contribution of the turbulent dissipation rate. This is in contrast with series A of the 
simulations where the reduced level of production is solely responsible for the reduced 
growth rate of turbulent kinetic energy. 

4.3. Consolidated results from series A and B 
The growth rate A ,  of the turbulent kinetic energy ranges from a high of 0.15 in case 
B1 to a low of 0.03 in case A4. Thus, compressibility has a strong 'stabilizing' effect 
on the turbulence growth. This occurs in spite of rather small values of the dilatational 
component of velocity; the compressible fraction of turbulent kinetic energy xK is 
always less than 10% at the end of each simulation. However, the influence of 
compressibility on the pressure field is much more significant, as shown below. A 
method to quantify compressibility effects on the pressure is provided by the pressure 
decomposition (Erlebacher et al. 1990; Sarkar 1992) which splits the pressure field at 
a given time into p' = pl'+pc', where the incompressible pressure PI '  satisfies 

v2p" = - 2u .  2 , ~  .(&') - 2ui, ,C/s.:') - (&' M i " ) ,  ii - mi, ii@u;') (23) 

while the remainder pc' is the compressible pressure. Thus, (23), which is a Poisson 
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FIGURE 9. Effect of (a) initial gradient Mach number and (b) initial turbulent Mach number on 
the evolution of compressible pressure in homogeneous shear flow. 

equation for P I ’ ,  has right-hand side terms that involve p and is free of p’ terms. 
Although the pressure decomposition is not unique, unlike the corresponding 
Helmholtz decomposition for the velocity, it is a useful method to quantify deviations 
of the pressure field from the baseline incompressible behaviour. In the simulations, 
since p’ is available from the compressible Navier-Stokes solution and P I ‘  is evaluated 
from (23), we obtain pc‘ as the difference p’-PI’.  Figures 9(u) and 9(b) show the 
evolution of the ratio p , “ , , / ~ : ~ , ,  in series A and B, respectively. It is clear that the 
‘compressible pressure’ fluctuation pc’  unlike the dilatational velocity fluctuation, is 
comparable to and actually larger than the incompressible counterpart. Figures 10(u) 
and 
(pFmsp:ms). A systematic increase in the magnitude of R(p, ,  p I )  from the low-M,, case 
A1 to the high-M,, case A4 is evident in figure lO(u). Also, the magnitude of R(p, ,p , )  
is generally larger in series A relative to series B. It appears from figures 9 and 
10 that compressibility has a significant quantitative effect on the pressure field. 
The consequent effect on the pressure-strain correlation in the Reynolds stress 
transport equations could lead to the reduction in the magnitude of the anisotropy of 
the Reynolds shear stress bI2, and the observed increase (not discussed in detail here) 
in the magnitude of the normal stress anisotropy. Thus, pressure-strain models that are 
used for incompressible flows may not be applicable to high-speed shear flows. 

The gradient Mach number and turbulent Mach number evolve in time because of 
the temporal evolution in the transverse lengthscale I and the kinetic energy K,  

10(b) show the evolution of the correlation coefficient R ( p c ,  p I )  = p C’ p I‘ / 
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FIGURE 10. Effect of (a) initial gradient Mach number and (b) initial turbulent Mach number on 
the evolution of pressure correlation coefficient in homogeneous shear flow. 

respectively. A plausible locality hypothesis for the influence of Mach number is that, 
after the initial transient and for sufficiently high Reynolds number, the value of either 
M g  or M ,  or both at a given time determines the value of turbulence growth rate A at 
that time. From figures 1 and 6, it appears that A eventually becomes approximately 
constant in time. Therefore, if either M ,  or M ,  shows a similar tendency to become 
invariant with time in the DNS, the locality hypothesis about the influence of Mach 
number would be supported. Figures 11 (a) and 11 (b) show the evolution of M ,  in series 
A and B, respectively. Of the seven cases, only case A4 shows a possible tendency of 
M ,  to become constant. M, exhibits a monotonic increase with time in all other cases. 
Thus, the DNS data on the long-time behaviour of M ,  do not support the hypothesis 
that the instantaneous value of M ,  determines the turbulence growth rate. Figures 
12(a) and 12(b) show the evolution of M, in series A and B, respectively. According 
to figure 12(a), the M,(St) curve tends to flatten with increasing St in cases Al-A3. 
Figure 12(b) shows that, after an initial increase in the series B simulations, M g  
decreases slightly for large time. Since the large eddies are constrained by the finite 
dimensions of the computational box, 1 stops increasing eventually and M,  = SZ/c 
stops increasing. The DNS data of figure 12 shows a tendency for M,  to become 
eventually constant and provide some support for the hypothesis that the turbulence 
growth rate depends on the instantaneous value of the gradient Mach number M,. 
Assuming that such a hypothesis is meaningful, we plot A ,  normalized by the 
incompressible value of 0.15 in our DNS against the terminal value of M g  in figure 13. 
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FIGURE 11. The evolution of turbulent Mach number in (a) series A and (b)  series B of the DNS 
of homogeneous shear flow. 

According to figure 13, there is a large reduction of the normalized turbulence growth 
rate in homogeneous shear flow when MB increases. The similarity of the curve in figure 
13 with the variation (Kline et al. 1982; Papamoschou & Roshko 1988) of thickness 
growth rate d&/dx with convective Mach number M ,  is evident. This similarity between 
the compressibility effect on the growth rate of turbulent kinetic energy in homogeneous 
shear flow and the compressibility effect on the thickness growth rate of the turbulent 
mixing layer is not surprising in view of (17) that relates the thickness growth rate 
dS/dx to the kinetic energy growth rate A .  

5. Implications of the DNS results for compressible shear flows 
The reduced growth rate of turbulent kinetic energy (and all its components) 

observed in the DNS of compressible homogeneous shear flow is analogous to the 
reduction in turbulence intensities (Elliott & Samimy 1990; Barre, Quine & Dussauge 
1994) and thickness growth rate in the high-speed mixing layer. Inspection of (17) 
shows that the streamwise growth rate dcY/dx of the mixing layer is proportional to 
A,/Cz ,  where A ,  is the asymptotic growth rate of turbulent energy in the 
corresponding homogeneous shear flow problem, and C, is defined by (1 5). Thus, the 
mixing layer growth rate d&/dx will decrease with increasing Mach number if either of 
the following factors occurs: (i) The asymptotic growth rate A ,  of K in the 
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FIGURE 12. The evolution of gradient Mach number in (a) series A and (b) series B of the DNS 
of homogeneous shear flow. 
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corresponding homogeneous shear problem reduces. (ii) The coefficient c, increases, 
that is the convection velocity U, becomes a relatively larger fraction of ( U ,  + U J .  

According to our DNS, the first of the above conditions is met. Experimental or 
simulation data are required to investigate whether the second factor occurs. Thus, the 
decrease of A ,  with the increase in Mach number that is observed in our DNS is 
consistent with the experimentally observed reduction in the growth rate of mixing 
layer thickness. More importantly, the phenomenon of reduced ‘efficiency’ of 
turbulence production by shear that occurs in the homogeneous shear flow DNS may 
be an important contributor to the reduced shear layer growth observed in experiments 
on the compressible mixing layer. A recent numerical study by Papamoschou & Lele 
(1993) of the evolution of the disturbance field of a small isolated vortex placed in a 
hyperbolic-tangent mean flow profile has found that the growth rate of the perturbation 
energy decreases owing to reduced production at high convective Mach numbers. 
Although the conditions (such as a small-amplitude disturbance and isolated vortex) 
considered by Papamoschou & Lele (1993) are very different from those in the present 
DNS of homogeneous shear flow, it is interesting to note that both studies find that 
compressibility reduces the Reynolds shear stress. 

The effect of gradient Mach number M g  appropriately defined using the mean 
compression rate D = IV- UI instead of the shear rate S has been investigated by 
Jacquin et al. (1993) for the shock/turbulence interaction problem and by Cambon et 
al. (1993) for the case of homogeneous compression in the rapid distortion theory 
(RDT) limit, that is for D K / c  9 1. Both investigations found that the growth of 
turbulent kinetic energy increases monotonically with the gradient Mach number, in 
contrast to the finding of the present paper. Of course, the present work differs in two 
crucial aspects from that of Jacquin et al. (1993) and Cambon et al. (1993) which may 
account for the different results. First, shear flow is considered here instead of 
compressed flow; and second, the mean shear rate is moderate so that nonlinear effects 
are important in the present work while nonlinear effects are negligible with respect to 
the large mean strain in the RDT approach used by the other authors. 

It is well known (Bradshaw 1977; Lele 1994) that compressibility effects over and 
above the influence of mean density are much stronger in the mixing layer than the 
boundary layer. The mean Mach number, either free-stream M ,  in the boundary layer 
or convective M, in the mixing layer, may take the same value, say 2; however, at this 
value of Mach number, the boundary layer does not show the large reduction in 
thickness growth rate that the shear layer does. This suggests that there may be another 
non-dimensional parameter based on the speed of sound which could conceivably 
distinguish between the boundary layer and the shear layer by taking different values 
although the mean Mach number is the same in these flows. We now show that the 
gradient Mach number Mg could be such a parameter by estimating its value in the 
boundary layer and the mixing layer. 

Consider the adiabatic zero-pressure-gradient boundary layer on a flat plate. The 
gradient Mach number 

in the log-region, which occupies a large portion of the boundary layer, is estimated as 
follows. The Van Driest scaling for the law of the wall (Bradshaw 1977) in the adiabatic 
compressible boundary layer, 
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where 7, is the wall shear stress and K the von Karmin constant, is used for the mean 
shear rate. Since the active shear-stress-producing motion scales with distance from the 
wall (Townsend 1980), the approximate relation 1 x y  is used for the integral 
lengthscale. Thus, (24) becomes 

Here M, = (7,/pw)'/2//c, is the friction Mach number based on wall friction and 
thermodynamic properties at the wall. The relation M, = M,(Cf/2)'/2 which links the 
friction Mach number to the free-stream Mach number is now substituted into (26) to 
give 

Thus, the gradient Mach number is a constant given by (27) in the log-region of the 
high-speed boundary layer. 

We now consider the mixing layer. The mean velocity U in the mixing layer between 
two streams with velocities U, and U,, respectively, is assumed (Schlichting 1979) to 
behave like an error-function, 

where 7 = 2(y-yC)/6(x) is the similarity coordinate, ye is the position of the half- 
velocity point, @) is the mixing layer thickness, and erf (7) = (2/n1/,) exp (- u2) du. 
Let us estimate the value of Mg at 7 = 0 where the velocity gradient is maximum. From 
(28), the velocity gradient at 7 = 0 is 2(U1 - UZ)/(n1/' 8). The lengthscale 1 of the 
turbulence is approximated by 1 x S which is consistent with the measurements of 
Wygnanski & Fielder (1970) in an incompressible mixing layer, and the speed of sound 
at the centre of the mixing layer is taken to be 0.5 (c, + c,). Then, the expression 

Mg x 2.2M, (29) 

is obtained as an estimate for the gradient Mach number at the centreline. 
We now compare the variation of M g  as a function of M ,  and M,, respectively, for 

the mixing layer and the boundary layer. The Van Driest I1 expression for Cf(M,) 
which agrees well with experimental data (Bradshaw 1977) is used in (27) to obtain M g  
as a function of M ,  in the boundary layer. The momentum thickness Reynolds 
number for the boundary layer is chosen to be Re, = lo4. The solid curve in figure 14 
displays the variation of Mg at the mixing layer centreline given by (29), while the 
dashed curve shows the variation of Mg in the log-region of the boundary layer 
represented by (27). It is clear that the gradient Mach number Mg for the mixing layer 
becomes much larger than that for the boundary layer when the mean Mach number 
increases. The smallness of Mg in the boundary layer relative to the shear layer is a 
crucial difference between the two flows that could account for the much smaller 
compressibility effect in the boundary layer relative to the shear layer. The turbulence 
production level is observed to decrease in our DNS when Mg increases. Thus, on the 
basis of these considerations, the compressibility effect that reduces turbulence 
production is expected to be far smaller in a boundary layer relative to the mixing layer 
even if the mean flow Mach numbers have the same value in the two cases. This 
expectation is borne out by experimental results for the two flows. 
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6.  Conclusions 
DNS of a compressible fluid in turbulent homogeneous shear flow is performed for 

several cases in order to investigate and clarify some aspects of the influence of 
compressibility on turbulence. The two Mach numbers relevant to homogeneous shear 
flow- the turbulent Mach number Mt and the gradient Mach number M,-were 
prescribed to have different initial values in the simulations. The initial value of M g  is 
varied keeping the initial value of Mt constant in series A of the simulations, and vice 
versa in series B. Although the Reynolds number Re, z 40 at the end of the simulations 
is moderate, it is large enough for the flow to be turbulent. A total of six 12S3 
simulations are performed. The simulations are used to investigate the influence of 
compressibility on the normalized growth rate of the turbulent kinetic energy K given 
by A = (l/SK)(dK/dt) where S is the mean shear rate. The behaviour of A is 
important because it is shown here through an analogy to be proportional to the 
thickness growth rate of the corresponding inhomogeneous mixing layer. The DNS 
results show that homogeneous shear flow, which is perhaps the simplest example of 
a turbulent shear flow, is strongly affected by compressibility. The asymptotic growth 
rate A m  of the turbulent kinetic energy decreases when either the initial gradient Mach 
number M,, or the initial turbulent Mach number M,, is increased, and furthermore 
the reduction is substantially larger in the situation where M,, is increased. This 
‘stabilizing’ effect of compressibility is analogous to the reduction in turbulent 
intensities and thickness growth rate observed in experiments on the high-speed mixing 
layer. It may be noted that the inhibited growth of turbulence in homogeneous shear 
flow is not a mean density effect, since the initial mean density is constant between cases 
and does not change with flow evolution. 

The asymptotic growth rate of the turbulent kinetic energy depends on the eventual 
balance between the turbulent production by shear, the turbulent dissipation, and 
dilatational terms. A systematic comparison of these terms in the different cases is 
performed in order to identify probable causes for the reduced growth rate. Such a 
comparison leads to the conclusion that the reduction in the Reynolds shear stress 
anisotropy b,, and consequent reduction in the turbulence production level is 



Stabilizing efect of compressibility in turbulent shear flow 185 

predominantly responsible for the reduced growth rate of the turbulent kinetic energy. 
The dilatational terms (pressure dilatation and compressible dissipation) are not 
negligible in the sense that they are observed to be as large as 20% of the turbulent 
kinetic energy budget. However, the difference in the values of the growth rate A 
among different cases is not due to differences in the dilatational terms. 

The gradient Mach number Mg appears to be an important parameter in compressible 
shear flows. The turbulent energy growth rate decreases significantly when the gradient 
Mach number increases as shown in figure 13. For example, the growth rate is only half 
of its incompressible value at M g  = 2. We have estimated the value of M g  as a function 
of the convective Mach number Me in the mixing layer and as a function of the free- 
stream Mach number M ,  in the wall boundary layer. The parameter Mg increases 
significantly more rapidly in the mixing layer than in the boundary layer, when the 
mean Mach number of the flow (Me in the mixing layer or M ,  in the boundary layer) 
increases. For example, a supersonic shear layer with Me = 1 has M g  x 2.2, while a 
supersonic boundary layer with M ,  = 2, Re, = lo4 has M g  M 0.16. It is well known 
that explicit compressibility effects over and above the effect of variable mean density 
are much larger in the supersonic shear layer relative to the supersonic boundary layer. 
Since the reduction in turbulence production by the mean shear and the consequent 
‘stabilizing’ effect of compressibility in turbulent shear flows appears to be a strong 
function of the gradient Mach number in our DNS study, a possible reason for the 
difference between the extent of compressibility effects in the high-speed mixing layer 
and boundary layer is the large difference in values of the parameter Mg.  

Comments by J. Lasheras and P. A. Libby on a preliminary draft of the manuscript 
are appreciated. This work was supported by NASA grant NAG 1-1516 and originated 
during a stay at ICASE. 
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